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Report of the Progress on Grant DAMD17-94-J-4371

For the Period 23 September 1994 to 23 October 2000

Introduction

Biopsy is considered to be the definitive test to rule out breast cancer for those patients
who participate in breast screening examinations and whose mammograms are
interpreted as having suspicious findings. Excisional biopsy is a sensitive and specific
test for breast cancer[1]. If the cost of excisional biopsy were minimal, this would be an
ideal test for breast cancer malignancy. Unfortunately, the cost of this procedure in both
monetary and emotional terms, is significant [2,3,4]. Unfortunately, to achieve a high
sensitivity for detecting cancer, many women with mammographic findings due to benign
processes undergo biopsy. The false positive rate for the decision to biopsy is currently
between 66% and 90%. The goal of the work described here is to design a decision tool
to support the decision to biopsy. This decision aid must maintain the current high
detection rate for true cancers while accurately ruling out some of the benign cases and

thus avoiding unnecessary biopsies.

The problem of classifying suspicious mammographic lesions as benign or malignant is
recognized as a difficult practice. There is considerable variation in the skill with which
the task is achieved even within the group of radiologists who specialize on this task. The
radiographic manifestation of breast cancer is not well enough understood from a

fundamental scientific basis to allow an accurate theoretical predictive model to be




constructed from first principals. There is no accurate deterministic model for relating
mammographic findings to biopsy outcomes although some general rules are accepted.
Examples of these rules are “Older women are more likely to develop breast cancer than
young women.” “If the margin of a mass appears well circumscribed, the mass is likely to
be benign.” Unfortunately, the sensitivity and specificity of those rules that are generally
agreed upon is not sufficient to allow a strict implementation over the full range of cases
that are encountered in clinical practice. While rule based expert system s have enjoyed
success in some medidal diagnostic tasks, and there are expert mammographers whose
diagnostic performance would qualify them as experts, the construction of rule-ased
expert systems for this diagnostic task has met with limited success. This is quite possibly
due to the difficulty of describing the logical and analytic process used by the experts in a
form that can be used by other mammographers. Atypical difficulty with the expert
system approach is the description and encoding of the input data: two radiologists often
will use similar, but not exactly the same descriptions for a given lesion. It is often
difficult to overcome instability in a model due to this potential ambiguity in the input
data. Another difficulty for strict rule-based systems is that the descriptors used as inputs
to the model can be nonspecific: two lesions with similar descriptions can have opposite
outcomes at biopsy. These arguments indicate that an example-based technique would be
more appropriate. This is supported by realizing that radiologists are trained by
repeatedly examining sample cases with known outcomes that are maintained in a
medical school’s teaching files. The focus of this research has been in developing and
evaluating data driven models, specifically artificial neural networks (ANN) for the task

of predicting the outcome of biopsy given the description of mammographic lesions as




inputs. This work has been facilitated by the growing acceptance of BI-RADS as a

standardized lexicon for mammographic case reporting.

Progress in this project is demonstrated through the 47 publications supported in part by
this grant.

The publications included 13 peer-reviewed journal, 19 manuscripts in conference
proceedings, and 15 conference abstracts of presentations
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15. Floyd CE Jr., Lo JY, Baker JA, Kornguth PJ Multi-Institution Evaluation of Case-
Based Reasoning for Breast Cancer Prediction. Radiolog 213(P), 334 1999

ANN systems for the prediction task have been constructed and evaluated using a
growing database of mammographic cases that were sent to biopsy with the results
known. This work has been successful and has resulted in xxx peer-reviewed
publications, xxx invited presentations, xxx competitive presentations, and has served to
foster further reseérch efforts for constructing decision aids for the diagnosis of breast
cancer as demonstrated by the 11 funded grants that have been awarded since the start of
this project. The ideas that developed into these other grants were realized from this

work.

In the latter part of this research grant, the investigative emphasis has shifted from
algorithm development to clinical evaluation reflecting the shift from specific aim one to
specific aim two. After conducting several preliminary sessions with mammographers
using the system including three years of presentation of a live computer demonstration
version at the Radiological Society of North America InfoRad exhibit, several important
question shavé been identified regarding the user interface of the system. The first is the
question of how the results should be presented to the mamographer. An informal exit
interview with mammographers who used the system indicated that 70% preferred a
probabilistic output where the mammographer would be given a number between 0 and
100 to indicate the estimated percent probability that the case in question was malignant.
The other 30% of he users did not want a probability, they wanted a hard decision to
biopsy or not to biopsy. For these clinicians, the system threshold would be set to some
value and the binary result would be presented. All users, especially those preferring the

hardwired decision threshold, desired some indication of the certainty with which the
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decision was presented. Several individuals expressed an interest in being presented with
“similar” cases from which the neural network was trained. These reasonable requests
initiated the ideas that lead to the development of the CBR. In an effort to provide similar
“example cases”, it was realized that cases with similar findings would generate similar
ANN outputs even though these would not provide a complete or unique subset. A case
findings matching algorithm was implemented using a relational database (MicroSoft
ACCESS ™) to simplify and speed the coding. It was later found that this
implementation also dramatically improved the speed of execution. With this case
matching tool, different deﬁnitions‘ of what constituted a similar case could be
investigated. It was found that depending on how strict the definition of similarity, the
existing database could provide between 10 and 100 similar cases for each new case to be
evaluated. While beyond the scope of this investigation, given these cases identifications,
it would be straightforward to present digital version of the cases on a monitor to provide
partial explanation of the ANN result. It was natural to compute the fraction of
malignancies to total cases within the set of matched cases. With the use of this fraction
as a decision variable, a predictive tool was naturally implemented. While the evolution
of this technique proceeded as described above from an effort to provide explanation to
the mammographer for the recommendation suggested by the ANN, it was soon
recognized that the resulting algorithm was an instantiation of a simple case-based

reasoning system.

A preliminary investigation was performed to better understand the relationship of

findings to malignancy within the framework of the BI-RADS reporting lexicon. A Case-
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Based Reasoning (CBR) approach was selected for this study since we wished to
examine the cases and the similarity between them. In this context, a CBR was developed
and evaluated by its ability to predict the outcome of biopsy from mammographic
findings reported in the BI-RADS lexicon. To classify a given test case as benign or
malignant, CBR was implemented by comparing the case to all previous cases, selecting
those cases with were similar with regards to their findings and examining the outcomes
for those similar cases. A decision variable was formed as the “malignancy ratio:
computed as the ratio of the number of malignant cases to the total number of similar or
“matched” cases. Performance was evaluated by generating an ROC curve from the true
positive fraction and the false positive fraction as the threshold was applied to the

malignancy ratio.

The system is implemented as follows. The mammograms are read by clinicians using a
standard reporting lexicon (BI-RADS™). These findings are compared to a database of
findings from cases with known outcomes (from biopsy). The fraction of similar cases
that were malignant is returned. The clinician can then consider this result when making
the decision regarding biopsy. . This malignancy fraction is an intuitive measure that can
be readily included in the medical decision. This approach is intuitive. The CBR answers
the question “Of all cases that are similar to this one, how many were malignant at
biopsy?” This process is similar to that followed by the clinician when considering the

same problem.
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Methods

The CBR was implemented as a case retrieval engine in a relational database
framework. In this context, it functions as a query of a table of cases and outcomes. To
predict the outcome for a new test case, the test case is compared to each case in the
database through a matching rule. The prediction is the ratio of the number of malignant

to the total number of cases that match.

The components of the system include the case encoding and the matching rule. The

cases are encoded through a subset of the categorical BI-RADST™ image findings and
the patients’ age. For the initial experiment, similarity is defined as an exact match of
some subset of the findings. The database has been described previously[5] and was
restricted for this feasibility study to the first 500 cases since the properties of this set
were well understood and numerous previous studies had been conducted on this set.. Of
these 500, 232 of the cases described masses, 192 cases described microcalcifications,
and 29 cases described masses and microcalcifications associated that were associated
with the mass. The remaining 47 cases did not describe either a mass or a calcification
but were architectural distortions, asymmetric breast density, focal asymmetric density,
and/or asymmetric breast tissue. Malignant outcomes were reported for 174 (35%) of the
biopsies while 326 (65%) were found to be benign resulting in a Positive Predictive
Value (PPV) of 35%.

The input features were restricted to those that had been found to have the highest
independent predictive power in our earlier studies and included the patient age, and , for

masses, the mass margin, mass size, mass density, and mass shape, while for
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calcifications included calcification description, calcification number, calcification -
distribution, and special cases/associated findings.

Performance of the predictive system was evaluated through a round-robin
technique in which: a test case is selected from the dataset, the database is formed from
all of the other remaining cases, all of these remaining cases are compared to the test case
and those that match are selected. The malignancy fraction is found for the set of
matching cases. The testing example is replaced in the set and another is removed, the
resulting system is evaluated and this is repeated until all examples have been used as
testing cases. A threshold is applied to the set of malignancy fractions and the sensitivity
and false positive fraction are plotted as the threshold is applied at each value of the
malignancy fraction. A Receiver Operating Characteristic ROC curve is plotted from
these ordered pairs. The ROC areas were computed from the resulting curve using
Newton’s method of integration. Used as a performance measure, ROC area gives equal
significance to the sensitivity and specificity resulting from the application of a specific
threshold. It is clear that sensitivity has higher priority than specificity for this problem
since, while there is a need to reduce the number of benign biopsies, there is a greater
cost incurred by missing a malignancy than by performing a biopsy on a benign lesion.
As a consequence, a more appropriate measure could be formed by concentrating on the
performance at high sensitivity. To concentrate on this region, three other measures are
presented: the partial ROC area reported for sensitivity greater than 90% , and , the

specificity at sensitivities of 98% and 100%.
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Results

Performance for the ANN is presented in table 1 and described below. From a
* previous study on the predictive power of the findings using linear discrimanent analysis
(LDA) the following six findings were found to contribute significantly: Age, Mass
Margin, Mass Density, Calcification Description, Calcification Distribution, and
Associated Findings.

area of 0.77 but with very poor (<1%) specificity at high sensitivities of 90% and higher.

Requiring an exact match on all six features resulted in an ROC

Table 1
Performance of Case Based Reasoning
Matching | ROC Az Partial Specificity | Specificity
Rule ROC Az at 100% at 98%
Sensitivity | Sensitivity
6 findings 0.77 0.016 <0.01 0.012

Table 1 CBR performance.

The histogram for the malignant (positive) and benign (negative) cases as a

function of malignancy fraction is shown in fig. 1. The striped boxes indicate the negative

cases while the solid boxes show the positive cases.
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Histogram of CBR outputs
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Fig. 1 Histogram of CBR outputs.
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The ROC curve is shown in fig.2.

ROC for CBR matching 6 findings
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Fig. 2 ROC curve for CBR with exact match of 6 findings and age within 5 years.

Less than 0.12 seconds are required to predict the malignancy ratio for a new case
with the system running in a non-optimized ACCESS™ (Microsoft Inc., Redmond

Washington) database language on a Pentium II 300Mhz personal computer.

To date (September 2000), we have compiled a database of 1300 cases that were
examined at diagnostic mammography and were referred to biopsy at Duke University
Medical Center. Histograms for the most significant finding for mass cases (Mass

Margin) is shown in fig. 3 for both benign and malignant outcomes.
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Fig 3 Distribution of the Mass Margin feature over 532 mass cases. The distribution for
benign cases is shown as the open bars while the distribution for malignant cases is

shown as the solid bars.

Histograms for the most significant finding for calcification cases (Calcification

Description) is shown in fig 4. for both benign and malignant outcomes.
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Distribution of Calcification Description
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Fig 4. Distribution of the Calcification Description feature over the 529 calcification
cases. The distribution for cases with benign outcomes is shown as the open bars while
the distribution for cases with malignant outcomes is shown as the solid bars. Following
the second edition of BIRADS, the plot has combined the “benign” calcification
descriptions into one category which now includes the descriptions of milk of calcium-

like, rim, skin, vascular, spherical, suture, coarse, large rod-like, round, and dystrophic.

The potential for predictive power is obvious for these two findings. A complete analysis

of these data is in progress and will be submitted for publication in 2001.

Subgroups of cases
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For 1270 cases in the existing database (30 suspended cases are currently in final
review), the population of major sub-sets are shown in table 2 along with the fraction
of cases in the sub-set that were malignant. The change from previous field currently

is being re-structured and was unavailable for this table.

Population of subgroups defined by lesion type.

Class cases % of total | %malignant (PPV)
All 1270 100 34

Mass 532 42 34

Only

Calc 529 42 33

Only

No Mass | 147 12 35

No Calc

Mass 62 4 54

and Calc

Table 2: showing the population of major subgroups defined by lesion type.

Only the class with both mass and calcification features has an obvious difference

in the fraction of malignancy.

Subgroup by unsupervised clustering algorithms
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AUTOCLASS

In preliminary investigations, between 3 and 5 clusters were typically formed using the
program AUTOCLASS. An artificial neural network (ANN) was developed and
evaluated on the two common types of breast lesions, masses and calcification clusters.

When the ANN was trained on a data set containing both masses and calcifications, the
area (Az) under the receiver operating curve (ROC) for all the cases was 0.86 + 0.02 and
the partial area index (PAI) for TPFO > 0.9 was 0.50 + 0.05. The performance of the
ANN on cases containing only masses (Az = 0.95 £ 0.01, PAI = 0.77 % 0.05) was quite
different from the performance on cases containing only calcifications (Az = 0.70 £ 0.04,
PAI = 0.29 * 0.06). A logistic regression and radiologists’ gut assessment both exhibit a

similar difference in performance on masses versus calcifications. This indicates a clear

motivation for improvement for the cases with calcifications.

3.3.3 Constraint-Satisfaction
A constraint satisfaction neural network has been constructed and preliminary evaluations
were performed on the first 500 cases in the database. As table 3 shows, the CSNN

provides competitive performance as a classifier.
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Classifier ROC Area Index  SPECIFICITY at PPV

(Az) 95% Sensitivity
CSNN | 0.84 £ 0.02 50% 50%
BP-ANN 0.87 £0.02 52% 51%
Mammographers 0.82+0.02 37% 45%
Table 3: CSNN diagnostic performance when applied as a classifier. Previously

published performance of experienced mammographers and a backpropagation artificial

neural network (BP-ANN) are included for comparison purposes.

Case-Based Reasoning

In preliminary studies, we constructed a simple CBR system to classify cases
referred for biopsy. The CBR was evaluated on a set of 500 cases. A receiver operating
characteristic curve for the CBR performance is shown in fig. 5 below. Note the
encouraging behavior at high sensitivity. The sensitivity remains very high as the false
positive fraction (FPF) decreases and does not significantly decrease until the FPF has
dropped to 0.6 (specificity of 0.4). With a threshold of 0.2, 126 benign biopsies could be

avoided at a cost of 2 missed malignancies.
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Fig. 5. ROC plot of CBR output values for all benign and

malignant cases.

The portion of the ROC curve that is of greatest interest is the region of greatest
true-positive fraction (i.e. highest sensitivity) since few radiologists or patients would be
willing to under diagnose breast cancer for the sake of high specificity. At sensitivity of
0.98 (relative to all biopsied lesions) the specificity of some of our previous classifiers
has been as high as 0.4. Thus, almost 40% the benign biopsies could have been avoided

at the cost of missing 2% of the malignancies. The positive predictive value would be

increased from 35% to 46%. This study shows that classifiers using the BI-RADSTM

lexicon as inputs has the potential to improve the positive predictive value of the
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recommendation for breast biopsy. The ROC curve was plotted from the data directly,

not from a fit to the data.

3.2.4. Combined local classifiers
The optimal signal processing technique allows for a theoretical analysis for an upper

bound on the performance of the proposed combination of local “experts™ or classifiers.
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ROC Performance Bounds of Optimal Combination of Decisions of N Experts

Fig. 6 illustrates the upper bound ROC for optimally combining the outputs of N experts,
if each expert is operating at a sensitivity(TPF) of 0.95 and a false positive fraction

(FPF) of 0.60.
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Fig.6 represents an upper bound on the improvement which would be realized if all of the
experts are independent. In practice, the local classifiers (experts) are likely to be
correlated to some degree and so the actual improvement is expected to be less. While the
perfdrmance gained through this technique does depend on the independence of the
experts, the validity of the technique does not. The encouraging aspect of the ROC curves
in this figure is the dramatic decrease in FPF at high sensitivities as N, the number of
combined experts, is increased. The ROC curves in this figure were computed assuming
the same fixed operating point for each expert, but the technique is easily applied to
combine experts with different operating points. In addition, individual operating points
can be optimized if continuous outputs are available as they will be for most of the local

classifiers proposed.

Discussion

The work described here has resulted in an ANN with performance that can
significantly improve the current poor specificity of the clinical referral to breast biopsy
without sacrificing the sensitivity. Several option s have been investigated for alternate
decision strategies and several show promising performance. The work performed under
this grant has served to generate seed ideas that will be pursued further. The extensive
publications resulting from this work form a solid framework with which to pursue this

further work.
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